This repository has been archived on 2024-05-05. You can view files and clone it, but cannot push or open issues or pull requests.
work-stealing-scheduler/src/sched.c

300 lines
7.7 KiB
C

#include "../includes/sched.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct task_info {
void *closure;
taskfunc f;
};
struct scheduler {
/* Indicateurs de changement d'état */
pthread_cond_t *cond;
/* Taille des piles */
int qlen;
/* Mutex qui protège les piles */
pthread_mutex_t *mutex;
/* Nombre de threads instanciés */
int nthreads;
/* Nombre de threads en attente */
int nthsleep;
/* Piles de tâches */
struct task_info **tasks;
/* Liste des threads */
pthread_t *threads;
/* Positions actuelle dans la pile */
int *top;
};
/* Ordonnanceur partagé */
static struct scheduler sched;
/* Lance une tâche de la pile */
void *sched_worker(void *);
/* Nettoie les opérations effectuées par l'initialisation de l'ordonnanceur */
int sched_init_cleanup(int);
/* sched_spawn sur un coeur spécifique */
int sched_spawn_core(taskfunc, void *, struct scheduler *, int);
/* Récupère l'index du thread courant */
int current_thread(struct scheduler *);
int
sched_init(int nthreads, int qlen, taskfunc f, void *closure)
{
sched.cond = NULL;
sched.mutex = NULL;
sched.tasks = NULL;
sched.threads = NULL;
sched.top = NULL;
if(qlen <= 0) {
fprintf(stderr, "qlen must be greater than 0\n");
return -1;
}
sched.qlen = qlen;
if(nthreads < 0) {
fprintf(stderr, "nthreads must be greater than 0\n");
return -1;
} else if(nthreads == 0) {
nthreads = sched_default_threads();
}
sched.nthreads = nthreads;
sched.nthsleep = 0;
// Initialisation des mutex de chaque processus
if(!(sched.mutex = malloc(sched.nthreads * sizeof(pthread_mutex_t)))) {
perror("Mutexes");
return sched_init_cleanup(-1);
}
for(int i = 0; i < sched.nthreads; ++i) {
if(pthread_mutex_init(&sched.mutex[i], NULL) != 0) {
fprintf(stderr, "Can't init mutex for thread %d\n", i);
return sched_init_cleanup(-1);
}
}
// Initialisation des variables de conditions de chaque processus
if(!(sched.cond = malloc(sched.nthreads * sizeof(pthread_cond_t)))) {
perror("Variable conditions");
return sched_init_cleanup(-1);
}
for(int i = 0; i < sched.nthreads; ++i) {
if(pthread_cond_init(&sched.cond[i], NULL) != 0) {
fprintf(stderr, "Can't init condition variable for thread %d\n", i);
return sched_init_cleanup(-1);
}
}
// Initialisation du curseur suivant l'état de la pile de chaque processus
if(!(sched.top = malloc(sched.nthreads * sizeof(int)))) {
perror("Cursor top stack\n");
return sched_init_cleanup(-1);
}
for(int i = 0; i < sched.nthreads; ++i) {
sched.top[i] = -1;
}
// Allocation mémoire pour la pile de chaque processus
if(!(sched.tasks = malloc(sched.nthreads * sizeof(struct task_info *)))) {
perror("Stack list");
return sched_init_cleanup(-1);
}
for(int i = 0; i < sched.nthreads; ++i) {
if(!(sched.tasks[i] = malloc(qlen * sizeof(struct task_info)))) {
fprintf(stderr, "Stack for thread %d: %s\n", i, strerror(errno));
return sched_init_cleanup(-1);
}
}
if(!(sched.threads = malloc(sched.nthreads * sizeof(pthread_t *)))) {
perror("Threads");
return sched_init_cleanup(-1);
}
for(int i = 0; i < nthreads; ++i) {
if(pthread_create(&sched.threads[i], NULL, sched_worker, &sched) != 0) {
fprintf(stderr, "Can't create the thread %d\n", i);
if(i > 0) {
fprintf(stderr, ", cancelling already created threads...\n");
for(int j = 0; j < i; ++j) {
if(pthread_cancel(sched.threads[j]) != 0) {
fprintf(stderr, "Can't cancel the thread %d\n", j);
}
}
} else {
fprintf(stderr, "\n");
}
return sched_init_cleanup(-1);
}
}
if(sched_spawn_core(f, closure, &sched, 0) < 0) {
fprintf(stderr, "Can't create the initial task\n");
return sched_init_cleanup(-1);
}
for(int i = 0; i < nthreads; ++i) {
if((pthread_join(sched.threads[i], NULL) != 0)) {
fprintf(stderr, "Can't wait the thread %d\n", i);
return sched_init_cleanup(-1);
}
}
return sched_init_cleanup(1);
}
int
sched_init_cleanup(int ret_code)
{
if(sched.mutex) {
for(int i = 0; i < sched.nthreads; ++i) {
pthread_mutex_destroy(&sched.mutex[i]);
}
free(sched.mutex);
sched.mutex = NULL;
}
if(sched.cond) {
free(sched.cond);
sched.cond = NULL;
}
if(sched.tasks) {
for(int i = 0; i < sched.nthreads; ++i) {
if(sched.tasks[i]) {
free(sched.tasks[i]);
sched.tasks[i] = NULL;
}
}
free(sched.tasks);
sched.tasks = NULL;
}
if(sched.threads) {
free(sched.threads);
sched.threads = NULL;
}
if(sched.top) {
free(sched.top);
sched.top = NULL;
}
return ret_code;
}
int
sched_spawn(taskfunc f, void *closure, struct scheduler *s)
{
int core;
if((core = current_thread(s)) < 0) {
fprintf(stderr, "Thread not in list, who am I?\n");
return -1;
}
// On ajoute la tâche sur la pile du thread courant
return sched_spawn_core(f, closure, s, core);
}
int
current_thread(struct scheduler *s)
{
pthread_t current = pthread_self();
for(int i = 0; i < s->nthreads; i++) {
if(pthread_equal(s->threads[i], current)) {
return i;
}
}
return -1;
}
int
sched_spawn_core(taskfunc f, void *closure, struct scheduler *s, int core)
{
pthread_mutex_lock(&s->mutex[core]);
if(s->top[core] + 1 >= s->qlen) {
pthread_mutex_unlock(&s->mutex[core]);
errno = EAGAIN;
fprintf(stderr, "Stack is full\n");
return -1;
}
s->top[core]++;
s->tasks[core][s->top[core]] = (struct task_info){closure, f};
pthread_cond_signal(&s->cond[core]);
pthread_mutex_unlock(&s->mutex[core]);
return 0;
}
void *
sched_worker(void *arg)
{
struct scheduler *s = (struct scheduler *)arg;
// Récupère le processus courant (index tableau)
int curr_th = current_thread(s);
while(1) {
pthread_mutex_lock(&s->mutex[curr_th]);
// S'il on a rien à faire
if(s->top[curr_th] == -1) {
s->nthsleep++;
if(s->nthsleep == s->nthreads) {
// Signal a tout les threads que il n'y a plus rien à faire
// si un thread attend une tâche
pthread_cond_broadcast(&s->cond[curr_th]);
pthread_mutex_unlock(&s->mutex[curr_th]);
break;
}
// TODO: Essayer de voler une tâche à un autre coeur
if(0) {
// TODO:
// - Trouver un coeur avec le + de tâches en attente
// - Prendre la tâche la plus ancienne (pas LIFO)
// - La rajouter sur notre pile
continue;
}
pthread_cond_wait(&s->cond[curr_th], &s->mutex[curr_th]);
s->nthsleep--;
pthread_mutex_unlock(&s->mutex[curr_th]);
continue;
}
// Extrait la tâche de la pile
taskfunc f = s->tasks[curr_th][s->top[curr_th]].f;
void *closure = s->tasks[curr_th][s->top[curr_th]].closure;
s->top[curr_th]--;
pthread_mutex_unlock(&s->mutex[curr_th]);
// Exécute la tâche
f(closure, s);
}
return NULL;
}