306 lines
7.6 KiB
C
306 lines
7.6 KiB
C
#include "../includes/sched.h"
|
|
|
|
#include <errno.h>
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
struct task_info {
|
|
void *closure;
|
|
taskfunc f;
|
|
};
|
|
|
|
struct scheduler {
|
|
/* Taille des piles */
|
|
int qlen;
|
|
|
|
/* Variable de conditions pour reveillé les threads au besoin */
|
|
pthread_cond_t cond;
|
|
|
|
/* Mutex qui protège les piles */
|
|
pthread_mutex_t mutex;
|
|
|
|
/* Nombre de threads instanciés */
|
|
int nthreads;
|
|
|
|
/* Piles de tâches */
|
|
struct task_info **tasks;
|
|
|
|
/* Liste des threads */
|
|
pthread_t *threads;
|
|
|
|
/* Compteur des threads dormants */
|
|
int nthsleep;
|
|
|
|
/* Deck permettant de récupérer aussi bien le premier élément ajouté
|
|
* que le dernier */
|
|
int *top;
|
|
int *bottom;
|
|
};
|
|
|
|
/* Ordonnanceur partagé */
|
|
static struct scheduler sched;
|
|
|
|
/* Lance une tâche de la pile */
|
|
void *sched_worker(void *);
|
|
|
|
/* Nettoie les opérations effectuées par l'initialisation de l'ordonnanceur */
|
|
int sched_init_cleanup(int);
|
|
|
|
/* Récupère l'index du thread courant */
|
|
int current_thread(struct scheduler *);
|
|
|
|
int
|
|
sched_init(int nthreads, int qlen, taskfunc f, void *closure)
|
|
{
|
|
sched.tasks = NULL;
|
|
sched.threads = NULL;
|
|
sched.top = NULL;
|
|
sched.bottom = NULL;
|
|
|
|
if(qlen <= 0) {
|
|
fprintf(stderr, "qlen must be greater than 0\n");
|
|
return -1;
|
|
}
|
|
sched.qlen = qlen + 1; // circular buffer
|
|
|
|
if(nthreads < 0) {
|
|
fprintf(stderr, "nthreads must be greater than 0\n");
|
|
return -1;
|
|
} else if(nthreads == 0) {
|
|
nthreads = sched_default_threads();
|
|
}
|
|
sched.nthreads = 0;
|
|
|
|
sched.nthsleep = 0;
|
|
|
|
// Initialisation du mutex
|
|
if(pthread_mutex_init(&sched.mutex, NULL) != 0) {
|
|
fprintf(stderr, "Can't init mutex\n");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
|
|
// Initialisation variable de condition
|
|
if(pthread_cond_init(&sched.cond, NULL) != 0) {
|
|
fprintf(stderr, "Can't init varcond\n");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
|
|
// Initialisation du curseur suivant l'état de la pile de chaque processus
|
|
if(!(sched.top = malloc(nthreads * sizeof(int)))) {
|
|
perror("Cursor top stack");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
if(!(sched.bottom = malloc(nthreads * sizeof(int)))) {
|
|
perror("Cursor bottom stack");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
for(int i = 0; i < nthreads; ++i) {
|
|
sched.top[i] = 0;
|
|
sched.bottom[i] = 0;
|
|
}
|
|
|
|
// Allocation mémoire pour la pile de chaque processus
|
|
if(!(sched.tasks = malloc(nthreads * sizeof(struct task_info *)))) {
|
|
perror("Stack list");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
for(int i = 0; i < nthreads; ++i) {
|
|
if(!(sched.tasks[i] = malloc(qlen * sizeof(struct task_info)))) {
|
|
fprintf(stderr, "Stack for thread %d: %s\n", i, strerror(errno));
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
}
|
|
|
|
// Initialise l'aléatoire
|
|
srand(time(NULL));
|
|
|
|
// Créer les threads
|
|
if(!(sched.threads = malloc(nthreads * sizeof(pthread_t)))) {
|
|
perror("Threads");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
|
|
// Ajoute la tâche initiale
|
|
if(sched_spawn(f, closure, &sched) < 0) {
|
|
fprintf(stderr, "Can't create the initial task\n");
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
|
|
// Démarre les threads
|
|
for(int i = 0; i < nthreads; ++i) {
|
|
if(pthread_create(&sched.threads[i], NULL, sched_worker, &sched) != 0) {
|
|
fprintf(stderr, "Can't create the thread %d\n", i);
|
|
|
|
if(i > 0) {
|
|
fprintf(stderr, ", cancelling already created threads...\n");
|
|
for(int j = 0; j < i; ++j) {
|
|
if(pthread_cancel(sched.threads[j]) != 0) {
|
|
fprintf(stderr, "Can't cancel the thread %d\n", j);
|
|
}
|
|
}
|
|
} else {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
|
|
pthread_mutex_lock(&sched.mutex);
|
|
sched.nthreads++;
|
|
pthread_mutex_unlock(&sched.mutex);
|
|
}
|
|
|
|
for(int i = 0; i < nthreads; ++i) {
|
|
if((pthread_join(sched.threads[i], NULL) != 0)) {
|
|
fprintf(stderr, "Can't wait the thread %d\n", i);
|
|
return sched_init_cleanup(-1);
|
|
}
|
|
}
|
|
|
|
return sched_init_cleanup(1);
|
|
}
|
|
|
|
int
|
|
sched_init_cleanup(int ret_code)
|
|
{
|
|
pthread_mutex_destroy(&sched.mutex);
|
|
|
|
pthread_cond_destroy(&sched.cond);
|
|
|
|
if(sched.tasks) {
|
|
for(int i = 0; i < sched.nthreads; ++i) {
|
|
if(sched.tasks[i]) {
|
|
free(sched.tasks[i]);
|
|
sched.tasks[i] = NULL;
|
|
}
|
|
}
|
|
|
|
free(sched.tasks);
|
|
sched.tasks = NULL;
|
|
}
|
|
|
|
if(sched.threads) {
|
|
free(sched.threads);
|
|
sched.threads = NULL;
|
|
}
|
|
|
|
if(sched.top) {
|
|
free(sched.top);
|
|
sched.top = NULL;
|
|
}
|
|
|
|
if(sched.bottom) {
|
|
free(sched.bottom);
|
|
sched.bottom = NULL;
|
|
}
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
int
|
|
current_thread(struct scheduler *s)
|
|
{
|
|
pthread_t current = pthread_self();
|
|
|
|
pthread_mutex_lock(&s->mutex);
|
|
for(int i = 0; i < s->nthreads; ++i) {
|
|
if(pthread_equal(s->threads[i], current)) {
|
|
pthread_mutex_unlock(&s->mutex);
|
|
return i;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&s->mutex);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
sched_spawn(taskfunc f, void *closure, struct scheduler *s)
|
|
{
|
|
int th;
|
|
if((th = current_thread(s)) < 0) {
|
|
th = 0;
|
|
}
|
|
|
|
pthread_mutex_lock(&s->mutex);
|
|
|
|
int next = (s->top[th] + 1) % s->qlen;
|
|
if(next == s->bottom[th]) {
|
|
pthread_mutex_unlock(&s->mutex);
|
|
fprintf(stderr, "Stack is full\n");
|
|
errno = EAGAIN;
|
|
return -1;
|
|
}
|
|
|
|
s->tasks[th][s->top[th]] = (struct task_info){closure, f};
|
|
s->top[th] = next;
|
|
|
|
pthread_mutex_unlock(&s->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *
|
|
sched_worker(void *arg)
|
|
{
|
|
struct scheduler *s = (struct scheduler *)arg;
|
|
|
|
// Récupère le processus courant (index tableau)
|
|
int curr_th;
|
|
while((curr_th = current_thread(s)) < 0);
|
|
|
|
struct task_info task;
|
|
int found;
|
|
while(1) {
|
|
found = 0;
|
|
pthread_mutex_lock(&s->mutex);
|
|
|
|
if(s->bottom[curr_th] != s->top[curr_th]) {
|
|
found = 1;
|
|
s->top[curr_th] = (s->top[curr_th] - 1 + s->qlen) % s->qlen;
|
|
task = s->tasks[curr_th][s->top[curr_th]];
|
|
}
|
|
|
|
if(!found) {
|
|
// Vol car aucune tâche trouvée
|
|
for(int i = 0, k = rand() % (s->nthreads + 1), target;
|
|
i < s->nthreads; ++i) {
|
|
target = (i + k) % s->nthreads;
|
|
|
|
if(s->bottom[target] != s->top[target]) {
|
|
// Tâche trouvée
|
|
found = 1;
|
|
s->top[target] = (s->top[target] - 1 + s->qlen) % s->qlen;
|
|
task = s->tasks[target][s->top[target]];
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Aucune tâche à faire
|
|
if(!found) {
|
|
s->nthsleep++;
|
|
// Ne partir que si tout le monde dort
|
|
if(s->nthsleep >= s->nthreads) {
|
|
pthread_cond_broadcast(&s->cond);
|
|
pthread_mutex_unlock(&s->mutex);
|
|
|
|
break;
|
|
}
|
|
pthread_cond_wait(&s->cond, &s->mutex);
|
|
s->nthsleep--;
|
|
pthread_mutex_unlock(&s->mutex);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pthread_cond_broadcast(&s->cond);
|
|
pthread_mutex_unlock(&s->mutex);
|
|
|
|
// Exécute la tâche
|
|
task.f(task.closure, s);
|
|
}
|
|
|
|
return NULL;
|
|
}
|