This repository has been archived on 2024-01-18. You can view files and clone it, but cannot push or open issues or pull requests.
compilation/flap/src/utilities/graph.ml

429 lines
14 KiB
OCaml
Raw Normal View History

2023-10-04 15:40:22 +02:00
(** A module for graphs.
The implementation is based on purely functional datastructures
only: we make use of OCaml's standard modules Map and Set.
The implementation is generic with respect to the type of labels
for nodes and for edges. The module is therefore a functor
parameterized by the two descriptions of these types and their
operations.
*)
(** The type for edge labels.
We assume that there is a relatively small number of edge labels.
These labels are comparable and enumerable.
*)
module type EdgeLabelSig = sig
include Set.OrderedType
(** [all] enumerates all the possible edge labels. *)
val all : t list
(** [to_string e] converts [e] in a human readable value. *)
val to_string : t -> string
end
(** The type for node labels.
Node labels must be comparable.
*)
module type NodeLabelSig = sig
include Set.OrderedType
(** [to_string n] converts [n] in a human readable value. *)
val to_string : t -> string
end
(** The functor is parameterized by the previous two signatures. *)
module Make (EdgeLabel : EdgeLabelSig) (NodeLabel : NodeLabelSig) =
struct
(** A type for maps whose keys are integers. *)
module IntMap = Map.Make (struct type t = int let compare = compare end)
let int_map_update k m d f = ExtStd.update IntMap.find IntMap.add k m d f
(** A type for maps whose keys are edge labels. *)
module EdgeLabelMap = Map.Make (EdgeLabel)
(** A type for maps whose keys are node labels. *)
module NodeLabelMap = Map.Make (NodeLabel)
(** Internally, each node has an identifier which is a small integer. *)
type nodeid = NodeId of int
module IdCmp = struct type t = nodeid let compare = compare end
(** A type for maps whose keys are node identifiers. *)
module NodeIdMap = Map.Make (IdCmp)
let nodeid_map_update k m d f =
ExtStd.update NodeIdMap.find NodeIdMap.add k m d f
(** A type for sets of node identifiers. *)
module NodeIdSet = Set.Make (IdCmp)
(** The type for graphs.
The datastructure maintains redundant information about the
graph using multiple maps. Each map provides a logarithmic
complexity for important services of the datastructure, namely
the computation of nodes of least [degrees] and the computation
of a node [neighbourhood].
A node is externally characterized by a list of node labels
while internally it is characterized by a node identifier. We
also maintain this mapping using maps, namely [node_of_label]
and [labels].
[next_node_id] is a counter that helps determining the identifier
for a newly created node.
*)
type t = {
next_node_id : int;
node_of_label : nodeid NodeLabelMap.t;
labels : NodeLabel.t list NodeIdMap.t;
neighbours : NodeIdSet.t NodeIdMap.t EdgeLabelMap.t;
degrees : NodeIdSet.t IntMap.t EdgeLabelMap.t
}
let string_of_nodeid (NodeId x) = string_of_int x
(** [dump g] returns a text-based representation of the graph, for
debugging. *)
let dump g =
let neighbours =
EdgeLabelMap.bindings g.neighbours |> List.map (fun (c, m) ->
NodeIdMap.bindings m |> List.map (fun (id, ids) ->
Printf.sprintf "%s -%s-> %s"
(string_of_nodeid id)
(EdgeLabel.to_string c)
(String.concat "," (List.map string_of_nodeid (NodeIdSet.elements ids)))
)
) |> List.flatten |> String.concat "\n"
in
let degrees =
EdgeLabelMap.bindings g.degrees |> List.map (fun (c, m) ->
IntMap.bindings m |> List.map (fun (d, ids) ->
Printf.sprintf "%d =%s=> %s"
d
(EdgeLabel.to_string c)
(String.concat "," (List.map string_of_nodeid (NodeIdSet.elements ids)))
)
) |> List.flatten |> String.concat "\n"
in
Printf.sprintf "%s\n%s\n" neighbours degrees
(** The empty graph. *)
let empty =
let degrees =
List.fold_left
(fun m e -> EdgeLabelMap.add e IntMap.empty m)
EdgeLabelMap.empty
EdgeLabel.all
in
let neighbours =
List.fold_left
(fun m e -> EdgeLabelMap.add e NodeIdMap.empty m)
EdgeLabelMap.empty
EdgeLabel.all
in
{
next_node_id = 0;
node_of_label = NodeLabelMap.empty;
labels = NodeIdMap.empty;
neighbours;
degrees;
}
exception InvalidNode
exception InvalidEdge
let defined_node g n = NodeLabelMap.mem n g.node_of_label
exception UnboundNode of NodeLabel.t
let id_of_node g n = try
NodeLabelMap.find n g.node_of_label
with Not_found ->
raise (UnboundNode n)
let nodes_of_id g n = NodeIdMap.find n g.labels
let nodes g =
List.map snd (NodeIdMap.bindings g.labels)
(** Sanity check for the data structure. *)
let sanity_check = false
exception InconsistentDegree
let check_consistent_degree g =
(** The number of neighbours of [x] is the degree of [x]. *)
let valid_degree c x ngb =
let xdegree = NodeIdSet.cardinal ngb in
NodeIdSet.mem x (IntMap.find xdegree (EdgeLabelMap.find c g.degrees))
in
EdgeLabelMap.iter (fun c ngbs ->
NodeIdMap.iter (fun x ngb ->
if not (valid_degree c x ngb) then (
raise InconsistentDegree
)
) ngbs
) g.neighbours
let update_neighbour update_set g id1 e id2 =
(** We focus on [e]. *)
let nbg = EdgeLabelMap.find e g.neighbours
and deg = EdgeLabelMap.find e g.degrees in
(** What is the degree of id1? *)
let id1_nbg = try NodeIdMap.find id1 nbg with _ -> assert false in
let id1_deg = NodeIdSet.cardinal id1_nbg in
(** Update the neighbours of id1 with update_set id2. *)
let nbg = nodeid_map_update id1 nbg NodeIdSet.empty (update_set id2) in
(** Update the degree of id1. *)
let deg = int_map_update id1_deg deg NodeIdSet.empty (NodeIdSet.remove id1) in
let deg =
if IntMap.find id1_deg deg = NodeIdSet.empty then
IntMap.remove id1_deg deg
else
deg
in
let id1_nbg = try NodeIdMap.find id1 nbg with _ -> assert false in
let id1_deg = NodeIdSet.cardinal id1_nbg in
let deg = int_map_update id1_deg deg NodeIdSet.empty (NodeIdSet.add id1) in
(** Finally, update the graph. *)
let neighbours = EdgeLabelMap.add e nbg g.neighbours
and degrees = EdgeLabelMap.add e deg g.degrees in
let g = { g with neighbours; degrees } in
(** If you suspect a bug in the implementation of the graph data
structure, which is always possible. Activating sanity check
might help you to track it down. *)
if sanity_check then check_consistent_degree g;
g
let add_neighbour = update_neighbour NodeIdSet.add
let del_neighbour = update_neighbour NodeIdSet.remove
(** [add_node g [n1;...;nN]] returns a new graph that extends [g] with
a new node labelled by [n1;...;nN]. None of the [nI] can be used
by another node in [g]. Otherwise, [InvalidNode] is raised.
In the sequel, the new node can be identified by any [nI].
*)
let add_node g ns =
(** First, a fresh identifier for the node. *)
let nodeid = NodeId g.next_node_id in
let next_node_id = g.next_node_id + 1 in
(** Second, we check that [ns] are not used by any other node. *)
if List.exists (defined_node g) ns then
raise InvalidNode;
(** Third, update maps. *)
let node_of_label =
List.fold_left (fun m n -> NodeLabelMap.add n nodeid m) g.node_of_label ns
in
let labels = NodeIdMap.add nodeid ns g.labels in
let neighbours =
EdgeLabelMap.map (fun nbg ->
NodeIdMap.add nodeid NodeIdSet.empty nbg
) g.neighbours
in
(** Initially, the node has a degree 0 since it has no neighbour. *)
let degrees =
EdgeLabelMap.map
(fun deg -> int_map_update 0 deg NodeIdSet.empty (NodeIdSet.add nodeid))
g.degrees
in
{ next_node_id; node_of_label; labels; degrees; neighbours }
(** [add_edge g n1 e n2] returns a new graph that extends [g] with a
new edge between [n1] and [n2]. The edge is labelled by [e]. If [n1]
or [n2] does not exist, then [InvalidNode] is raised. *)
let add_edge g n1 e n2 =
if not (defined_node g n1 && defined_node g n2) then
raise InvalidNode;
let id1 = id_of_node g n1 and id2 = id_of_node g n2 in
let g = add_neighbour g id1 e id2 in
let g = add_neighbour g id2 e id1 in
g
(** [neighbours g e n] returns the neighbours of [n] in [g]. *)
let neighbours g e n =
let id = id_of_node g n in
let ids =
NodeIdSet.elements (NodeIdMap.find id (EdgeLabelMap.find e g.neighbours))
in
List.map (fun id -> NodeIdMap.find id g.labels) ids
(** [del_node g n] returns a new graph that contains [g] minus the
node [n] and its edges. *)
let del_node g n =
let id = id_of_node g n in
let g =
EdgeLabelMap.fold (fun e nbg g ->
let nnbg = NodeIdMap.find id nbg in
NodeIdSet.fold (fun id' g ->
let g = del_neighbour g id' e id in
let g = del_neighbour g id e id' in
g
) nnbg g
) g.neighbours g
in
let neighbours =
EdgeLabelMap.map (fun nbg ->
NodeIdMap.remove id nbg
) g.neighbours
in
let degrees =
EdgeLabelMap.map (fun deg ->
let deg0 = IntMap.find 0 deg in
let deg0 = NodeIdSet.remove id deg0 in
if deg0 = NodeIdSet.empty then
IntMap.remove 0 deg
else
IntMap.add 0 deg0 deg
) g.degrees
in
let node_of_label = List.fold_left (fun node_of_label l ->
NodeLabelMap.remove l node_of_label
) g.node_of_label (NodeIdMap.find id g.labels)
in
let labels = NodeIdMap.remove id g.labels in
{ g with node_of_label; neighbours; labels; degrees }
(** [del_edge g n1 e n2] *)
let del_edge g n1 e n2 =
let i1 = id_of_node g n1 and i2 = id_of_node g n2 in
let g = del_neighbour g i1 e i2 in
del_neighbour g i2 e i1
(** [edges g e] returns all the edges of kind [e] in [g]. *)
let edges g e =
let nbg = EdgeLabelMap.find e g.neighbours in
let edges =
NodeIdMap.fold (fun id ids edges ->
NodeIdSet.fold (fun id' edges ->
(NodeIdMap.find id g.labels, NodeIdMap.find id' g.labels) :: edges
) ids edges) nbg []
in
let edges = List.map (fun (n1, n2) ->
if n1 < n2 then (n1, n2) else (n2, n1)
) edges
in
let edges = List.sort compare edges in
ExtStd.List.uniq edges
let min_degree exclusion_criteria g c nc =
let cdegrees = EdgeLabelMap.find c g.degrees in
let forbidden = EdgeLabelMap.find nc g.neighbours in
let rec aux degrees =
try
let k, ids = IntMap.min_binding degrees in
let rec aux' ids =
try
let id = NodeIdSet.choose ids in
let excluded = List.exists exclusion_criteria (nodes_of_id g id) in
if not excluded
&& NodeIdMap.find id forbidden = NodeIdSet.empty then
Some (k, List.hd (NodeIdMap.find id g.labels))
else
aux' (NodeIdSet.remove id ids)
with Not_found ->
aux (IntMap.remove k degrees)
in
aux' ids
with Not_found -> None
in
aux cdegrees
(** [are_connected g n1 e n2] *)
let are_connected g n1 e n2 =
let id1 = id_of_node g n1 in
let id2 = id_of_node g n2 in
NodeIdSet.mem id2 (NodeIdMap.find id1 (EdgeLabelMap.find e g.neighbours))
(** [pick_edge g e] *)
let pick_edge g e =
try
let degrees = EdgeLabelMap.find e g.degrees in
let k, ids = IntMap.max_binding degrees in
if k = 0 then None
else
let id = NodeIdSet.choose ids in
let nbg = EdgeLabelMap.find e g.neighbours in
let nbgid = NodeIdMap.find id nbg in
let id2 = NodeIdSet.choose nbgid in
Some (List.hd (nodes_of_id g id), List.hd (nodes_of_id g id2))
with Not_found ->
None
(** [merge g n1 n2] *)
let merge g n1 n2 =
let i1 = id_of_node g n1 and i2 = id_of_node g n2 in
let nodes1 = nodes_of_id g i1 and nodes2 = nodes_of_id g i2 in
let nbgs =
List.map
(fun e ->
(e, List.filter (fun n -> not (List.mem n1 n) && not (List.mem n2 n))
(neighbours g e n1 @ neighbours g e n2)))
EdgeLabel.all
in
let g = del_node g n1 in
let g = del_node g n2 in
let g = add_node g (nodes1 @ nodes2) in
List.fold_left (fun g (e, nbgs) ->
List.fold_left (fun g ns ->
add_edge g n1 e (List.hd ns)
) g nbgs
) g nbgs
(** [all_labels g n] *)
let all_labels g n =
let i = id_of_node g n in
nodes_of_id g i
(** [show g labels] represents the graph [g] in the DOT format and
uses [dotty] to display it. *)
let show g labels =
let dot_node (NodeId n, ns) =
let ns =
String.concat "," (List.map (fun n ->
NodeLabel.to_string n ^ (match labels n with None -> "" | Some s -> " => " ^ s)
) ns)
in
Printf.sprintf "n%d [label=\"%s\"];" n ns
in
let dot_nodes =
String.concat "\n" (List.map dot_node (NodeIdMap.bindings g.labels))
in
let seen = Hashtbl.create 13 in
let dot_edge (NodeId n) c (NodeId n') =
let n, n' = min n n', max n n' in
if not (Hashtbl.mem seen (n, n')) then (
Hashtbl.add seen (n, n') ();
Printf.sprintf "n%d -- n%d [label=\"%s\"];" n n' (EdgeLabel.to_string c)
) else ""
in
let neighbour c (id, ids) =
String.concat "\n" (List.map (dot_edge id c) (NodeIdSet.elements ids))
in
let dot_edges_of_kind (c, ngb) =
String.concat "\n" (List.map (neighbour c) (NodeIdMap.bindings ngb))
in
let dot_edges =
String.concat "\n" (List.map dot_edges_of_kind (EdgeLabelMap.bindings g.neighbours))
in
let dot =
Printf.sprintf "graph g {\n%s\n%s\n}" dot_nodes dot_edges
in
let fname, cout = Filename.open_temp_file "flap" ".dot" in
output_string cout dot;
close_out cout;
Printf.printf "Graph written in %s. (You need to install dotty to display it.)\n%!" fname;
ignore (Sys.command ("dotty " ^ fname ^ "&"))
end